Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Comput Biol Chem ; 96: 107613, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1549716

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is an ongoing global health emergency that has caused tremendous stress and loss of life worldwide. The viral spike glycoprotein is a critical molecule mediating transmission of SARS-CoV-2 by interacting with human ACE2. However, through the course of the pandemics, there has not been a thorough analysis of the spike protein mutations, and on how these mutants influence the transmission of SARS-CoV-2. Besides, cases of SARS-CoV-2 infection among pets and wild animals have been reported, so the susceptibility of these animals requires great attention to investigate, as they may also link to the renewed question of a possible intermediate host for SARS-CoV-2 before it was transmitted to humans. With over 226,000 SARS-CoV-2 sequences obtained, we found 1573 missense mutations in the spike gene, and 226 of them were within the receptor-binding domain (RBD) region that directly interacts with human ACE2. Modeling the interactions between SARS-CoV-2 spike mutants and ACE2 molecules showed that most of the 74 missense mutations in the RBD region of the interaction interface had little impact on spike binding to ACE2, whereas several within the spike RBD increased the binding affinity toward human ACE2 thus making the virus likely more contagious. On the other hand, modeling the interactions between animal ACE2 molecules and SARS-CoV-2 spike revealed that many pets and wild animals' ACE2 had a variable binding ability. Particularly, ACE2 of bamboo rat had stronger binding to SARS-CoV-2 spike protein, whereas that of mole, vole, Mus pahari, palm civet, and pangolin had a weaker binding compared to human ACE2. Our results provide structural insights into the impact on interactions of the SARS-CoV-2 spike mutants to human ACE2, and shed light on SARS-CoV-2 transmission in pets and wild animals, and possible clues to the intermediate host(s) for SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19/veterinary , COVID-19/virology , Mutation, Missense , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Animals, Wild/genetics , Animals, Wild/virology , COVID-19/transmission , Computational Biology , Host Microbial Interactions/genetics , Host Specificity/genetics , Humans , Molecular Dynamics Simulation , Pandemics/veterinary , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Pets/genetics , Pets/virology , Protein Interaction Domains and Motifs/genetics , Risk Factors
2.
One Health ; 13: 100352, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1531692

ABSTRACT

In the frames of a One Health strategy, i.e. a strategy should be able to predict susceptibility to infection in both humans and animals, developing a SARS-CoV-2 mutation tracking system is a goal. We observed that the phylogenetic proximity of vertebrate ACE2 receptors does not affect the binding energy for the viral spike protein. However, all viral variants seem to bind ACE2 better in many animals than in humans. Moreover, two observations highlight that the evolution of the virus started at the beginning of 2020 and culminated with the appearance of the variants. First, codon usage analysis shows that the B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants, similar in the use of codons, are also similar to a virus sampled in January 2020. Second, the host-specific D614G mutation becomes prevalent starting from March 2020. Overall, we show that SARS-CoV-2 undergoes a process of molecular evolution that begins with the optimization of codons followed by the functional optimization of the spike protein.

3.
J Med Virol ; 92(6): 602-611, 2020 06.
Article in English | MEDLINE | ID: covidwho-153847

ABSTRACT

To investigate the evolutionary history of the recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China, a total of 70 genomes of virus strains from China and elsewhere with sampling dates between 24 December 2019 and 3 February 2020 were analyzed. To explore the potential intermediate animal host of the SARS-CoV-2 virus, we reanalyzed virome data sets from pangolins and representative SARS-related coronaviruses isolates from bats, with particular attention paid to the spike glycoprotein gene. We performed phylogenetic, split network, transmission network, likelihood-mapping, and comparative analyses of the genomes. Based on Bayesian time-scaled phylogenetic analysis using the tip-dating method, we estimated the time to the most recent common ancestor and evolutionary rate of SARS-CoV-2, which ranged from 22 to 24 November 2019 and 1.19 to 1.31 × 10-3 substitutions per site per year, respectively. Our results also revealed that the BetaCoV/bat/Yunnan/RaTG13/2013 virus was more similar to the SARS-CoV-2 virus than the coronavirus obtained from the two pangolin samples (SRR10168377 and SRR10168378). We also identified a unique peptide (PRRA) insertion in the human SARS-CoV-2 virus, which may be involved in the proteolytic cleavage of the spike protein by cellular proteases, and thus could impact host range and transmissibility. Interestingly, the coronavirus carried by pangolins did not have the RRAR motif. Therefore, we concluded that the human SARS-CoV-2 virus, which is responsible for the recent outbreak of COVID-19, did not come directly from pangolins.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Genome, Viral , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Animals , Betacoronavirus/classification , Betacoronavirus/pathogenicity , COVID-19 , Chiroptera/virology , Coronavirus Infections/virology , Eutheria/virology , Evolution, Molecular , Host Specificity , Humans , Phylogeny , Pneumonia, Viral/virology , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/classification , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL